| 
 | 
 本帖最后由 mono 于 2014-6-6 12:33 编辑  
 
 
95%可信区间是用正态分布来估计的,你问问你自己,为什么你的95%的可信区间总是对称的,你可以用profile 95%CI 来坐估计,这样你的95%的可信区间就不是对称的,卡放分布本身就不是对称的。 
读读下面的东西,可能对你有益。 
In general, the confidence interval based on the standard error strongly depends on the assumption of normality for the estimator. The "profile likelihood confidence interval" provides an alternative. 
I am pretty sure you can find documentation for this. For instance, here and references therein. 
Here is a brief overview. 
Let us say the data depend upon two (vectors of) parameters, θ  and δ , where θ  is of interest and δ is a nuisance parameter.  
The profile likelihood of θ  is defined by 
L p (θ)=max δ L(θ,δ)  
where L(θ,δ) is the 'complete likelihood'. L p (θ)  does no longer depend on δ since it has been profiled out. 
Let a null hypothesis be H 0 :θ=θ 0   and the likelihood ratio statistic be 
LR=2(logL p (θ ^ )−logL p (θ 0 ))   
where θ ^   is the value of θ  that maximises the profile likelihood L p (θ)  . 
A "profile likelihood confidence interval" for θ  consists of those values θ 0   for which the test is not significant. 
 |   
 
 
 
 |