标题: Low Rank Radial Smoothing using GLIMMIX and its Scoring [打印本页] 作者: shiyiming 时间: 2010-10-22 13:39 标题: Low Rank Radial Smoothing using GLIMMIX and its Scoring From oloolo's blog on SasProgramming
<p><a href="http://feedads.g.doubleclick.net/~a/8xZxOVdT1hM6aoQzqeN6tGQKvv8/0/da"><img src="http://feedads.g.doubleclick.net/~a/8xZxOVdT1hM6aoQzqeN6tGQKvv8/0/di" border="0" ismap="true"></img></a><br/>
<a href="http://feedads.g.doubleclick.net/~a/8xZxOVdT1hM6aoQzqeN6tGQKvv8/1/da"><img src="http://feedads.g.doubleclick.net/~a/8xZxOVdT1hM6aoQzqeN6tGQKvv8/1/di" border="0" ismap="true"></img></a></p>Low Rank Radial Smoothing using GLIMMIX [1], a semiparametric approach to smooth curves [2]. Specifying TYPE=RSMOOTH option in RANDOM statement, we can implement this spline smooth approach. The bast thing is that for future scoring, data preparation is extremely easy by using the OUTDESIGN= & NOFIT options in v9.2 PROC GLIMMIX, then use PROC SCORE twice on this design matrix to score the fixed effects design matrix X and the random effects design matrix Z, respective, add up together is the score from this radial smoothing method.<br />
<br />
[Coming soon]<br />
<br />
<br />
<br />
<pre style="background-color: #ebebeb; border: 1px dashed rgb(153, 153, 153); color: #000001; font-family: Andale Mono,Lucida Console,Monaco,fixed,monospace; font-size: 12px; line-height: 14px; overflow: auto; padding: 5px; width: 100%;"><code>
proc glimmix data=train_data absconv=0.005;
model y = &covars /s;
random &z /s type=rsmooth knotmethod=equal(20);
run;
proc glimmix data=test nofit outdesign=test2;
model y=&covars /s;
random &z /s type=rsmooth knotmethod=equal(20);
run;
proc score data=test2 score=beta_fix type=parms out=score_fix;
var &covars;
run;
proc score data=test2 score=beta_random type=parms out=score_random;
var _z:;
run;
</code></pre><br />
<br />
<br />
<br />
Reference:<br />
<br />
1. SAS Institute, Statistical Analysis with the GLIMMIX procedure Course Notes, SAS Press, SAS Institute<br />
2. D Rupper, M.P. Wand, R.J. Carroll, Semiparametric Regression, Cambridge University Press, Cambridge, 2003<br />
<br />
<a href="http://www.amazon.com/Semiparametric-Regression-Statistical-Probabilistic-Mathematics/dp/0521785162?ie=UTF8&tag=xie1978&link_code=bil&camp=213689&creative=392969" imageanchor="1" target="_blank"><img alt="Semiparametric Regression (Cambridge Series in Statistical and Probabilistic Mathematics)" src="http://ws.amazon.com/widgets/q?MarketPlace=US&ServiceVersion=20070822&ID=AsinImage&WS=1&Format=_SL160_&ASIN=0521785162&tag=xie1978" /></a><img alt="" border="0" height="1" src="http://www.assoc-amazon.com/e/ir?t=xie1978&l=bil&camp=213689&creative=392969&o=1&a=0521785162" style="border: medium none ! important; margin: 0px ! important; padding: 0px ! important;" width="1" /><div class="blogger-post-footer"><img width='1' height='1' src='https://blogger.googleusercontent.com/tracker/29815492-869207075818705085?l=www.sas-programming.com' alt='' /></div><img src="http://feeds.feedburner.com/~r/SasProgramming/~4/NoRFHK2z6l4" height="1" width="1"/>