但阿瑟却已经正视这种经济的不稳定性。他告诉他的同事们,留神看看窗外吧。无论你喜欢也好、不喜欢也罢,市场是不稳定的,这个世界是不稳定的,它充满了进化、动荡和令人吃惊的事情。经济学必须将这些动荡囊括其内。现在,他相信他已经发现了能够使经济学做到这一点的方法,用一个叫做“报酬递增率”(increasing returns)的原则,或用詹姆士国王的一句译文“拥有者被施予”(TO them thathath shall be given)来表述。为什么高科技公司都竞相蜂拥到斯坦福附近的硅谷安营扎寨,而不设在安・阿泊或柏克莱?因为许多老的高科技公司已经设在那里了。即,拥有者获得。为什么VHS电视录像系统占据了市场,虽然从技术上来说Beta还略胜它一筹?因为早些时候已经有一些人凑巧买了VHS系统的产品,这就导致了录像店里出现了更多的VHS录像带,反过来又导致了更多的人买VHS录放像机,以此类推。拥有者获得。
科学家当然不是从头开始就放弃了自己的责任,也不是完全放弃了自己的责任。1945年,一些参与了芝加哥曼哈顿计划的科学家发起了一场请愿,要求政府在无人居住的岛屿上试爆原子弹,不要往日本本土投掷原子弹。后来,在美国向日本的广岛和长崎扔下原子弹,致使战争结束之后,美国许多参与核武器研制计划的科学家开始形成了各种政治运动组织,游说政府对核武器的使用采取尽可能严格的控制――民间控制,而不是军事控制。那些年出现了《原子科学家期刊》(Bulletin of the Atomic Scientists),这是一份专门刊登关于原子武器这种新形式的战争力量对社会与政治的影响的讨论的杂志。还出现了考温也参加的原子科学家联盟(The Federation of Atomic Scientists),现在改称为美国科学家联盟(The Federation of AmericanScientists)这样的政治运动组织。“参与曼哈顿计划的科学家去华盛顿陈述自己的意见,得到了很认真的对待。”考温说。“在四十年代,当原子弹出现以后,物理学家被当成了奇迹的创造者。他们与麦克马洪议案(McMahon bill)的起草,与由此而创立的原子能源委员会(the Atomic EnergyCommission)、以及将原子能源置于民间控制之下的思想有很大关系。”
非线性方程式为人工所难以解开是出了名的。这就是为什么科学家们这么久以来一直在回避这个问题的原因。但这恰恰是计算机能够介入之处。在五十年代和六十年代,科学家们一开始玩上计算机就意识到,计算机不是很介意线性与非线性相对的问题。计算机只管努力运算,给出答案。当科学家利用计算机的这一优势,用计算机功能来解越来越多的非线性方程式时,他们发现了他们在对付线性系统时从未想象到的奇怪而绝妙的情形。比如,在量子场理论中,通过一条浅狭沟渠的水波会对某种微妙的动力产生深刻的关联:它们都是一种叫做“孤粒子”的孤立而独立动作的能量脉冲。木星上的大红斑(The Great Red Spoton Jupiter)也许是另一个这样的孤粒子。它是一个比地球还要大的旋转飓风,已经独立存在了至少四百年。
另一个来访者大卫・潘恩斯(David Pines)应麦特罗博利斯的邀请,也于1983年盛暑开始参加这个讨论。潘恩斯是伊利诺斯大学理论物理学家、《现代物理学评论》(Reviews of Modern Physics)的主编、罗沙拉莫斯理论物理学部咨询委员会主席。他也成为热烈响应考温关于宏伟的科学整合主张的人。自从五十年代做博士论文开始,他的许多研究就着重于创造性地理解由许多粒子组成的系统的“集成”行为。他的研究包括从对某种大量的原子核粒子的震动形式到液态氦的量子流动。潘恩斯还公开推测说,这类分析也许会使我们更好地理解人类处于组织和社会之中的群体行为。“我出于知识上的偏好而赞成考温的设想。”他说。潘恩斯是考温关于成立一个新的科研机构的设想的热情支持者。而且,作为伊利诺斯高级研究所的创始人、主任和科罗拉多州阿斯本物理学中心的创始人之一,他在这一方面还颇有一些经验。“就照你的计划干吧。”他告诉考温。他已经等不及地想参与创建这个机构了。“我总是觉得,将非常强干的科学家们聚在一起讨论新问题是一件非常有趣的事。成立一个新的科研机构和写一篇优秀的科学论文同样有意思。”他说。
1984年5月,桑塔费研究所成立了。没有地点,没有教职员,也没有一分钱。事实上,它只不过是个邮政信箱和斯比哥尔办公室的一个电话号码。它甚至没有一个恰当的名字:“桑塔费研究所”这个名称已经被一家治疗中心注册使用了。所以考温和他的同事们只得将研究所取名为“里奥格兰德研究所”(The Rio Grande Institute。里奥格兰德河流经桑塔费城西几英里处)。但不管怎么样,研究所已经存在了。
他回忆说,激起他采取行动的第一件事,是1965年他读到粒子物理学家维克多・韦斯考普夫(Victor Weisskopf)的一篇文章。在这篇演讲中,韦斯考普夫似乎在暗示,“基础”科学――即粒子物理和宇宙学的一部分――不同于、也优于诸如凝聚态物理学这样的应用性学科。作为一个凝聚态物理学家,安德森感到受了侮辱,非常恼怒。他立即写了一篇反对这个观点的文章,于1972年发表在《科学杂志》(Science Magazine)上。这篇文章的题目是《更多就不同》(More Is Different)。自此以后,只要一有机会安德森就宣传他的观点。
几个星期以后,他接到了潘恩斯的邀请,有机会自己去见识一番了。事情的结果是,那年夏天,他担任了阿斯本物理中心(Aspen Center for Physics)主席。这个物理中心隔着一个草坪与阿斯本研究所相望,是理论物理学家的避暑地。安德森本来计划到那儿去见潘恩斯,讨论一些关于中子星内部结构的计算问题。所以当他到潘恩斯的办公室见他第一面时,他就直奔主题地问:“好吧,你们这个研究所到底是玩花活呢,还是认真的?”他知道潘恩斯一准会说:“当然是认真的。”但他想听听到底是怎么个认真法。
比如说,芝加哥大学神经科学家杰克・考温(JackCowan。与乔治・考温没有亲戚关系)认为,分子生物学家和神经科学家早就应该开始把更多的注意力放到理论方面的研究上,从手头已经掌握的大量关于单个细胞和单个分子的数据资料中寻找出意义所在。但马上就有反对意见说,细胞和生物分子很大程度上是随机进化的产物,对理论研究没有太大的意义。但杰克・考温以前就听到过类似的反对意见,他坚持自己的立场,举麻醉剂导致的视幻觉为例。这些视幻觉会有格子状、螺旋状、漏斗状等多种形状。每一个形状都可以被看作是一个通过脑视觉皮层的线性电波。对此是否有可能利用物理学家用过的数学场理论(mathematical field theories)做成线性电波的模式呢?
他一到牛津就发现这儿的环境非常适宜于他。他至今仍然能够数出他这一生中最使他激动的三个学术环境,牛津便是第一个。“我生平第一次发现我周围的人都比我聪明。美国人在那里也是人才济济。有罗德奖学金获得者,马歇尔奖学金获得者。其中有些人已是很知名的人物了。那时和我们一批的莫德林学院的(Magdalene)戴维・苏特(David Souter),现在供职于最高法院。乔治・F.威尔(Geofge F Will,美国著名新闻评论家及专栏作家)和我曾经总是去吃印度餐厅,逃避学院的伙食。”
生活在同事和至交中间的考夫曼很快就发现,在网络的统计特征的研究上他并非是孤军奋战。比如,1952年,英格兰神经生理学家罗斯・阿什贝(Ross Ashby)在他出版的《脑之设计》(Design for a Brain)这本书中就思考了同样的问题。考夫曼说:“他探索的是复杂网络的普遍性,提出了一个与我的问题相似的问题,但我却对此一无所知。当我一发现这件事就立即与他取得了联系。”
在三年前的1949年,希伯在他出版的《行为组织》(The Organization of Behavior)一书中作出了他的回答。他的基本思想是,假设大脑经常在“突触”上做些微妙的变化。突触是神经冲动从这个细胞跳到那个细胞的连接点。这个假设对希伯来说是非常大胆的,因为当时他对此还没有任何证据。但希伯为这一假设阐述说,这些突触上的变化正是所有学习和记忆的基础。比如说,通过眼睛视觉的感官冲动会通过加强沿途所有突触的方式在它的神经网络上留下痕迹。差不多的情形同样会发生在由耳进入的听觉神经系统、或大脑内其它脑际活动。结果是,随意启动的网络会迅速将自己组织起来。通过某种正反馈,经验被积累了起来:强健的、经常被使用的突触会变得更强健,而弱小、不经常使用的突触会萎缩。被经常使用的突触最后强健到一定程度以后,记忆就被锁定了。这些记忆反过来又会布满整个大脑,每一个突触都与一个复杂的突触形态相对应,这些突触形态包含了成千上万个神经元。(希伯是最先描述这种分布记忆的人之一,这种描述后来被称为“关联论”(connectionist)。)
当时,相似的“可能性爆炸”概念已经为主流人工智能研究人员所熟知。比如,在匹兹堡卡内基理工学院(即现在的卡内基麦伦大学),爱伦・妞威尔(Allem Newell)和赫伯特・西蒙(Herbert Simon)自五十年代中期开始就在进行一项里程碑式的研究,即,研究人类如何解决问题。纽威尔和西蒙让被试验对象猜各种谜语和玩各种游戏,包括下国际象棋,并让被实验对象陈述在这个过程中自己的思想。他们通过这种方法发现,人类解决问题总是会涉及脑力对广阔的可能性“问题空间”的逐步搜索,而每一步都以实际经验为导向:“如果情况是这样的话,那么就该采取那个步骤。”纽威尔和西蒙通过将他们的理论编入“一般问题解决法”(General Problem Solver)程序和将这个程序应用于解那些谜语和游戏,表明“问题-空间”角度能够出色地反映人类的推理风格。确实,他们的经验性检索概念早已成为人工智能领域的金科玉律。一般问题解决法至今仍然是新兴的人工智能发展史上最有影响的程序之一。
但不幸的是,组织这班人马说说容易,做起来可就难了。阿瑟与阿罗、安德森、潘恩斯和荷兰德商定了候选人名单后,基本上满足了该项目对非经济学研究人员的需要。菲尔・安德森同意来桑塔费做短期逗留,他的学生,杜克大学的里查德・派尔莫(Richard Palmer of Duke University)也同意来桑塔费做短期逗留。荷兰德肯定也会来。还有才思敏捷、能言善辩的明尼苏达概率理论家大卫・阑恩(DavidLane)。阿瑟甚至还请来了与他合作发表过论文的苏联概率理论家约里・厄姆利夫和约里・凯尼欧夫斯基。另外还有考夫曼、法默和所有其他罗沙拉莫斯和桑塔费圈子里的人。但当阿瑟开始召集经济学家的时候,他很快发觉,他对可信度的关注绝非错误。几乎所有人都听到过关于桑塔费的传言。阿罗走到哪儿都把桑塔费拴在嘴边。坦桑塔费研究所是哪些人组成的,都干些什么?许多人都还不太清楚。“当我召集经济学家时,他们总是说:‘嗯,好,但有些晚了,我已经有其它安排了。’基本上,让没有参加过桑塔费研讨会的经济学家对桑塔费的研究项目感兴趣是非常非常困难的。”
法默说:“我上中学时就开始思考大自然中的自组织现象了。虽然起初的想法很模糊,是因为读了科学幻想小说。”他尤其记得艾萨克・阿斯莫夫(Isaac Asimov)写的那本《最后的问题》(The Final Question)。在那个故事中,未来的人类向宇宙超级计算机咨询如何废除热动力学第二定律。即:随着原子的自我随机化,宇宙万物无情地趋于冷却、腐朽和消亡的倾向。他们问,怎样才能扭转不断增强的熵?(熵是物理学家对分子层无序现象的称谓。)后来,在人类消亡、星球冷却很久以后,宇宙超级计算机终于知道了如何完成这项伟绩。它宣告说:“让光芒照耀吧!”然后就诞生了一个崭新而低熵的宇宙。
派卡德独自形成了相变的概念,在时间上与朗顿同步,而且也深入思考了适应性的问题。所以他禁不住要问:那些最能调整自己的系统是否也是计算最好的系统,即,处于有序与无序之间的系统呢?这是一个扣人心弦的思想,派卡德为此做了一个模拟。他从用许多细胞自动机规则开始,要求它们都要单独做某种计算。然后他用荷兰德式的基因算法,根据细胞自动机规则计算的好坏再派生规则。他发现,最终的规则,也就是那些能够很有效地进行计算的规则,最后确实聚集在有序与无序之间的地带。1988年,派卡德将这一观察发现包括到在他的“混沌边缘的适应性”的论文中了,这是第一次有人在正式发表的论文中引用“混沌的边缘”这个词。(那时朗顿仍然非正式地称其为“混沌的开始”:onset of Chaos.)